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In this paper exponentially fitted multiderivative methods are developed for the
numerical solution of the one-dimensional Schrödinger equation. The methods are
called multiderivative since uses derivatives of order two and four. An application to
the the resonance problem of the radial Schrödinger equation indicates that the new
method is more efficient than other similar well known methods of the literature.
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1. Introduction

The radial Schrödinger equation has the form

y ′′(r) = [l(l + 1)/r2 + V (r) − k2]y(r). (1)

Models of this type, which represent a boundary value problem, occur frequently
in theoretical physics and chemistry, material sciences, quantum mechanics and
quantum chemistry etc. (see for example [1–4]).

In the following we give some definitions for (1):

• the function W(r) = l(l+1)/r2 +V (r) is called the effective potential. This
satisfies W(r) → 0 as r → ∞;

• k2 is a real number denoting the energy;

• l is a given integer representing angular momentum;

• V is a given function which denotes the potential;
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• the boundary conditions are

y(0) = 0 (2)

and a second boundary condition, for large values of r, determined by
physical considerations.

From the literature is known that the last decades many numerical methods
have been developed for the numerical solution of the Schrödinger equation (see
[5–24]). The vision of the above activity was the development of fast and reliable
methods.

The numerical methods for the approximate solution of the Schrödinger
equation can be divided into two main categories:

• methods with constant coefficients;

• methods with coefficients dependent on the frequency of the problem.1

In this paper we will investigate methods of the second category.
In this paper we introduce an explicit exponentially fitted multiderivative

method for the numerical solution of the Schrödinger equation. The method is
called multiderivative since it includes second and fourth derivative of the func-
tion. We apply the new developed methods to the resonance problem of the
Schrödinger equation. The comparison of the new methods with known methods
of the literature shows the efficiency of the new developed methods. For compar-
ison purposes we use the well known Numerov method and the exponentially fit-
ted Numerov-type method of Raptis and Allison [25].

2. A new family of multiderivative methods

We introduce the following family of methods to integrate y ′′ = f (x) y(x):

ȳn+1 = 2 yn − yn−1 + a0 h2 y ′′
n + a1 h4 y(4)

n , (3)

yn+1 = 2 yn − yn−1 + h2 [
c0 y ′′

n + c1
(
ȳ ′′

n+1 + y ′′
n−1

)]
+h4

[
c2 y(4)

n + c3

(
ȳ

(4)

n+1 + y
(4)

n−1

)]
, (4)

where y ′′
n±i = fn±i yn±i , y

(4)
n±i =

(
f ′′

n±i + f 2
n±i

)
yn±i +2 f ′

n±i y
′
n±i and i = − 1(1)1. We

note also that ȳ ′′
n+1 = fn+1 ȳn+1 where ȳn+1 is calculated from the relation (3). It

is easy to see that in order the above method, (3) and (4) to be applicable, then
approximate schemes for the first derivatives of y are needed.

1In the case of the radial Schrödinger equation the frequency of the problem is equal to:√
|l(l + 1)/r2 + V (r) − k2|.
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2.1. Construction of the exponentially fitted and trigonometrically fitted scheme
for equation (3)

In order the stage (3) of the above method to integrate exactly any linear
combination of the functions:

{1, x, cos(±v x), sin(±v x)} (5)

the appropriate parameters of the new method are the solution of a system of
equations, which is produced in the following way.

We calculate yn±i , i = − 1(1)1, and y ′′
n = fn yn, y(4)

n = (
f ′′

n + f 2
n

)
yn +

2 f ′
n y ′

n for y(x) = xn, n = 0, 1 and for y(x) = cos(v x), y(x) = sin(v x). So, the
following system of equations is hold:

1 = a0, (6)

2 cos(w) − 2 = w2 (−a0 + a1 w2), (7)

where w = vh.
The solution of equations. (6) and (7) gives us the parameters ai, i = 0, 1

of the first layer of the new method.
Solving the system in the previous section equations. (6) and (7), we obtain

the parameters of the first layer of the new method, which are

a0 = 1,

(8)

a1 = 2 cos(w) − 2 + w2

w4
.

The above parameter a1 converted into its Taylor series expansion which is
given below:

a1 = 1
12

− 1
360

w2 + 1
20160

w4 − 1
1814400

w6 + 1
239500800

w8

− 1
43589145600

w10 + 1
10461394944000

w12 + · · · (9)

In figure 1 we present the behavior of the quantity a[1] = a1, where a1 is
given by equation (8).

2.2. Construction of the exponentially fitted and trigonometrically fitted scheme
for equation (4)

In order the stage (4) of the above method to integrate exactly any linear
combination of the functions:

{ 1, x, x2, x3, x4, x5, x6, x7, cos(±v x), sin(±v x) }, (10)
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Figure 1. Behavior of the coefficient a1 given by equation (8).

the appropriate parameters of the new method are the solution of a system of
equations, which is produced in the following way.

We calculate yn±i , and y ′′
n±i = fn±iyn±i , y

(4)
n±i =

(
f ′′

n±i + f 2
n±i

)
yn±i +2f ′

n±i y
′
n±i ,

i = − 1(1)1 for y(x) = xn, n = 0(1)7 and for y(x) = cos(v x), y(x) = sin(v x). So,
the following system of equations holds:

1 = c0 + 2 c1, (11)

1 = 12 c1 + 12 c2 + 24 c3, (12)

1 = 30 c1 + 360 c3, (13)

2cos(w) − 2 = w2 (
2 w2c3 cos(w) − 2 cos(w) c1 − c0 + c2 w2) , (14)

where w = vh.
The solution of equations (11)–(13) gives us the parameters ci, i = 0(1)2 as

function of c0:

c1 = 1
2

− 1
2

c0,

c2 = − 61
180

+ 5
12

c0, (15)

c3 = − 7
180

+ 1
24

c0.

Based on equations (15) and (14) we have the parameter c0:

c0 = 360 cos(w) − 360 + 14w4 cos(w) + 180 cos(w) w2 + 61 w4

15 w4 cos(w) + 180 cos(w) w2 − 180 w2 + 75 w4
. (16)

The above parameter c0 converted into its Taylor series expansion which is
given below.
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Figure 2. Behavior of the coefficient c0 given by equation (16).

c0 = 115
126

− 59
158760

w2 − 233
44008272

w4 − 451037
7208554953600

w6

− 111679
181655584830720

w8 − 1010455379
214008444489071232000

w10

− 159482401
7882095632412869683200

w12 + · · · (17)

In figure 2 we present the behavior of the quantity c[0] = c0, where c0 is
given by equation (16).

Based on the above coefficients we can find that the local truncation error
of the above schemes (3) and (4) is given by

LT E(h) = − 11
90720

h8 (
y(6)

n + w2 y(4)
n

)
. (18)

We note that if we substitute w = − i w in the above formulae, the exponen-
tially fitted case is produced.

2.3. Stability analysis

In order to investigate the periodic stability properties of the numerical
methods for problems of Schrödinger type, Lambert and Watson [29] have intro-
duced the scalar test equation

y ′′ = − q2 y (19)

and the interval of periodicity, where q is a constant.
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Based on their theory when the symmetric two-step multiderivative method
is applied to the scalar test equation (19), we obtain the difference equation

yn+1 − 2 B(H) yn + yn−1 = 0 (20)

and the associate characteristic equation:

z2 − 2 B(H) z + 1 = 0, (21)

where H = qh.
For our methods (3) and (4) we have

B(H) = 1 − H 2
(

1
2

c0 + c1

)
+ H 4

(
1
2

c1 a0 + 1
2

c2 + c3

)

−H 6
(

1
2

c1 a1 + 1
2

c3 a0

)
+ 1

2
c3 a1H

8. (22)

Definition 1. (see [29]). A symmetric two-step method with the characteristic
equation given by equation (21) is said to have an interval of periodicity

(
0, H 2

0

)
if, for all H ∈ (

0, H 2
0

)
, the roots zi, i = 1, 2, satisfy

z1 = ei θ(H) and z2 = e−i θ(H), (23)

where θ(H) is a real function of H .

Based on the above definition, it is easy for one to see that the following
theorem holds.

Theorem 1. A method that has a characteristic equation given by equation (21)
has a non-empty interval of periodicity (0,H 2

0 ), if for all H 2 ∈(0,H 2
0 ), |B(H)|<1.

So we have that in order the above methods (3) and (4) to have a
non-empty interval of periodicity the following conditions must hold:

1 ± B(H) > 0 (24)

for all H 2 ∈ (
0, H 2

0

)
.

Substituting in B(H) the coefficients given by equations (8), (15) and (16),
we obtain that in the case of w = H , equation (24) holds for every H 2 ∈ (

0, π2
)
,

i.e. larger than the corresponding interval of periodicity of Numerov’s method
(which is equal to (0, 6)).
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3. Computational implementation

As we have mentioned previously, in order the above methods (3) and (4)
to be applicable we need approximate schemes for the first derivatives of y. This
is due to the following formula:

y
(4)
n±i =

(
f ′′

n±i + f 2
n±i

)
yn±i + 2 f ′

n±i y
′
n±i and i = − 1(1)1. (25)

The general formulae of the first derivatives on the points xi , i = n − 1(1)n

+ 1 are given by

h y ′
n+1 = a2,n+1 yn+1 + a1,n+1 yn + a0,n+1 yn−1

+ h2 (
b2,n+1 y ′′

n+1 + b1,n+1 y ′′
n + b0,n+1 y ′′

n−1

)
, (26)

h y ′
n = a2,n yn+1 + a1,n yn + a0,n yn−1

+ h2 (
b2,n y ′′

n+1 + b1,n y ′′
n + b0,n y ′′

n−1

)
, (27)

h y ′
n−1 = a2,n−1 yn+1 + a1,n−1 yn + a0,n−1 yn−1

+ h2 (
b2,n−1 y ′′

n+1 + b1,n−1 y ′′
n + b0,n−1 y ′′

n−1

)
. (28)

In order the formulae (26) to integrate exactly any linear combination of
the functions:

{1, x, x2, cos(±v x), sin(±v x)}, (29)

the appropriate parameters of the above formula are the solution of a system of
equations, which is produced in the following way.

We calculate yn±i , and y ′′
n±i = fn±iyn±i , y ′

n±i i = − 1(1)1 for y(x) = xn,
n = 0(1)2 and for y(x) = cos(v x), y(x) = sin(v x). So, the following system of
equations holds:

0 = a2, n+1 + a1, n+1 + a0, n+1, (30)

1 = a2, n+1 − a0, n+1, (31)

2 = a2, n+1 + a0, n+1 + 2 b2, n+1 + 2 b1, n+1 + 2 b0, n+1, (32)

w cos(w) = −sin(w) (a0, n+1 − b0, n+1 w2 + b2, n+1 w2 − a2, n+1), (33)

−w sin(w) = a2, n+1 cos(w) + a1, n+1 + a0, n+1 cos(w) − b2, n+1 w2 cos(w),

− b1, n+1 w2 − b0, n+1 w2 cos(w), (34)

0 = a2,n + a1,n + a0,n , (35)

1 = a2,n − a0,n , (36)

0 = a2,n + a0,n + 2 b2,n + 2 b1,n + 2 b0,n , (37)

w = −sin(w) (a0,n − b0,n w2 − a2,n + b2,n w2), (38)

0 = a2,n cos(w) + a1,n + a0,n cos(w) − b2,n w2 cos(w) − b1,n w2

− b0,n w2 cos(w), (39)
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0 = a2, n−1 + a1, n−1 + a0, n−1, (40)

1 = a2, n−1 − a0, n−1, (41)

−2 = a2, n−1 + a0, n−1 + 2 b2, n−1 + 2 b1, n−1 + 2 b0, n−1, (42)

w cos(w) = −sin(w) (a0, n−1 − b0, n−1 w2 − a2, n−1 + b2, n−1 w2), (43)

w sin(w) = a2, n−1 cos(w) + a1, n−1 + a0, n−1 cos(w) − b2, n−1 w2 cos(w)

− b1, n−1 w2 − b0, n−1 w2 cos(w), (44)

where w = vh.
Considering that

b1, n+1 = b1,n = b1, n−1 = 1, (45)

the solution of the above system of equations is given by:

a2, n+1 = 1
2

− b2, n+1 − b0, n+1, a0, n+1 = − 1
2

− b2, n+1 − b0, n+1,

a1, n+1 = 2 b2, n+1 + 2 b0, n+1,

b2, n+1 = (2 w + 2 w cos(2 w) − 4 w cos(w) + 2 w3 cos(2 w)

− 2 sin(2 w) + 4 sin(w) − w2 sin(2 w)

+ 2 w4 sin(w))/(−4 w2 sin(2 w) + 8 w2 sin(w) − 2 w4 sin(2 w)),

b0, n+1 = (−2 w − 2 w cos(2 w) + 2 sin(2 w)

+ 4 w cos(w) − 4 sin(w) − 2 w3 + w2 sin(2 w)

+ 2 w4 sin(w))/(−4 w2 sin(2 w) + 8 w2 sin(w) − 2 w4 sin(2 w)), (46)

a0,n = −3
2

− b2,n − b0,n , a1,n = 2 + 2 b2,n + 2 b0,n ,

a2,n = −1
2

− b2,n − b0,n ,

b2,n = (−4 cos(w) w + 4 w − 2 w3 cos(w) + 2 sin(2 w)

− 4 sin(w) − w2 sin(2 w) + 4 w2 sin(w)

− 2 w4 sin(w))/(4 w2 sin(2 w) − 8 w2 sin(w) + 2 w4 sin(2 w)),

b0,n = (4 cos(w) w − 2 sin(2 w) − 4 w + 4 sin(w)

+ 2 w3 cos(w) − 3 w2 sin(2 w) + 4 w2 sin(w)

− 2 w4 sin(w))/(4 w2 sin(2 w) − 8 w2 sin(w) + 2 w4 sin(2 w)), (47)

a0, n−1 = −5
2

− b2, n−1 − b0, n−1, a2, n−1 = − 3
2

− b2, n−1 − b0, n−1,

a1, n−1 = 4 + 2 b2, n−1 + 2 b0, n−1,

b2, n−1 = (2 w + 2 w cos(2 w) + 2 w3 − 4 w cos(w)

− 2 sin(2 w) + 3 w2 sin(2 w) + 4 sin(w) − 8 w2 sin(w)

+ 2 w4 sin(w))/(−4 w2 sin(2 w) − 2 w4 sin(2 w) + 8 w2 sin(w)),
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b0, n−1 = (−2 w − 2 w cos(2 w) + 2 sin(2 w)

−2 w3 cos(2 w) + 5 w2 sin(2 w) + 4 w cos(w)

−4 sin(w) − 8 w2 sin(w) + 2 w4 sin(w))/

(−4 w2 sin(2 w) − 2 w4 sin(2 w) + 8 w2 sin(w)). (48)

The above parameters converted into its Taylor series expansion which are
given below.

b2, n+1 = 11
30

+ 89
4500

w2 + 13819
9450000

w4 + 8371
67500000

w6

+ 752613067
65488500000000

w8 + 2912078681
2606175000000000

w10

+ 301127030851
2708842500000000000

w12 + · · · ,

b0, n+1 = 1
30

− 11
4500

w2 − 883
1350000

w4 − 13801
157500000

w6

− 647386933
65488500000000

w8 − 133708144631
127702575000000000

w10

− 9662807981917
89391802500000000000

w12 + · · · ,

b2,n = 1
60

− 67
18000

w2 − 1963
2700000

w4 − 49301
540000000

w6

− 1317482263
130977000000000

w8 − 76981425751
72972900000000000

w10

− 19388788306337
178783605000000000000

w12 + · · · ,

b0,n = 11
60

+ 283
18000

w2 + 25009
18900000

w4 + 448643
3780000000

w6

+ 1477048987
130977000000000

w8 + 43553090461
39293100000000000

w10

+ 19806426537413
178783605000000000000

w12 + · · · ,

b2, n−1 = 1
6

+ 13
900

w2 + 2363
1890000

w4 + 3623
31500000

w6

+ 145434059
13097700000000

w8 + 365034269
331695000000000

w10

+ 1974325419491
17878360500000000000

w12 + · · · ,
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b0, n−1 = −1
6

− 7
900

w2 − 1637
1890000

w4 − 9131
94500000

w6

− 134565941
13097700000000

w8 − 27172361287
25540515000000000

w10

− 19653278591
180589500000000000

w12 + · · · . (49)

Based on the above coefficients we can find that the local truncation error
of the formulae (26)–(28) are given by:

LTEn+1 = − 1
45

h5 (
y(5)

n + w2 y(3)
n

)
,

LTEn = 7
360

h5 (
y(5)

n + w2 y(3)
n

)
, (50)

LTEn−1 = − 1
45

h5 (
y(5)

n + w2 y(3)
n

)
.

For the application of the first layer (3) of the methods (3) and (4) the fol-
lowing formula is also needed:

h y ′
n = aa1,n yn + aa0,n yn−1 + h2 (

bb1,n y ′′
n + bb0,n y ′′

n−1

)
. (51)

In order the formula (51) to integrate exactly any linear combination of the
functions:

{1, x, cos(±v x), sin(±v x)}, (52)

the appropriate parameters of the above formula are the solution of a system of
equations, which is produced in the following way.

We calculate yn±i , and y ′′
n±i = fn±i yn±i , y ′

n±i , i = − 1, 0, for y(x) = xn,
n = 0, 1 and for y(x) = cos(v x), y(x) = sin(v x). So, the following system of
equations holds:

0 = aa1,n + aa0,n , (53)

1 = −aa0,n , (54)

w = sin(w) (−aa0,n + bb0,n w2), (55)

0 = aa1,n + aa0,n cos(w) − bb1,n w2 − bb0,n w2 cos(w), (56)

where w = vh.
Considering that

bb1, n−1 = 1, (57)
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the solution of the above system of equations is given by

aa0,n = −1, aa1,n = 1,

bb1,n = sin(w) − cos(w) w

w2 sin(w)
, (58)

bb0,n = w − sin(w)

w2 sin(w)
.

The above parameters converted into its Taylor series expansion which are
given below.

bb0,n = 1
6

+ 7
360

w2 + 31
15120

w4 + 127
604800

w6 + 73
3421440

w8

+ 1414477
653837184000

w10 + 8191
37362124800

w12 + · · · , (59)

bb1,n = 1
3

+ 1
45

w2 + 2
945

w4 + 1
4725

w6 + 2
93555

w8

+ 1382
638512875

w10 + 4
18243225

w12 + · · ·

Based on the above coefficients we can find that the local truncation error
of the formula (51) is given by

LT En = − 1
24

h4 (
y(4)

n + w2 y(2)
n

)
. (60)

We note here that the exponentially fitted versions of the above formulae
can be constructed with similar procedures.

4. Numerical illustrations

In this section we present some numerical illustrations in order to investi-
gate the performance of our new method. Consider the numerical integration of
the radial Schrödinger equation (1) using the well-known Woods–Saxon poten-
tial (see [1,4–6,8]) which is given by

V (r) = Vw(r) = u0

(1 + z)
− u0z

[a(1 + z)2]
(61)

with z = exp[(r − R0)/a], u0 = − 50, a = 0.6 and R0 = 7.0. In figure 3, we give
a graph of this potential. In the case of negative eigenenergies (i.e. when E ∈
[−50, 0]) we have the well-known bound-states problem while in the case of pos-
itive eigenenergies (i.e. when E ∈ (0, 1000]) we have the well-known resonance
problem (see [5,6,28]).
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Figure 3. The Woods–Saxon potential.

4.1. Resonance problem — The Woods–Saxon potential

In the asymptotic region equation (1) effectively reduces to

y ′′(x) +
(

k2 − l(l + 1)

x2

)
y(x) = 0 (62)

for x greater than some value X.
The above equation has linearly independent solutions kxjl(kx) and kxnl(kx),

where jl(kx), nl(kx) are the spherical Bessel and Neumann functions respectively.
Thus the solution of equation (1) has the asymptotic form (when x → ∞)

y(x) � Akxjl(kx) − Bnl(kx)

� D[sin(kx − πl/2) + tan δl cos(kx − πl/2)], (63)

where δl is the phase shift which may be calculated from the formula

tan δl = y(x2)S(x1) − y(x1)S(x2)

y(x1)C(x2) − y(x2)C(x1)
(64)

for x1 and x2 distinct points on the asymptotic region (for which we have that
x1 is the right hand end point of the interval of integration and x2 = x1 −h, h is
the stepsize) with S(x) = kxjl(kx) and C(x) = kxnl(kx).

Since the problem is treated as an initial-value problem, one needs y0

and y1 before starting a two-step method. From the initial condition, y0 = 0.
The value y1 is computed using the Runge–Kutta–Nyström 12(10) method of
Dormand et al. [36,37]. With these starting values we evaluate at x1 of the
asymptotic region the phase shift δl from the above relation.
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As a test for the accuracy of our methods we consider the numerical inte-
gration of the Schrödinger equation (1) with l = 0 in the well-known case where
the potential V (r) is the Woods–Saxon one (61).

One can investigate the problem considered here, following two procedures.
The first procedure consists of finding the phase shift δ(E) = δl for E ∈ [1, 1000].
The second procedure consists of finding those E, for E ∈ [1, 1000], at which δ

equals π/2. In our case we follow the first procedure i.e. we try to find the phase
shifts for given energies. The obtained phase shift is then compared to the ana-
lytic value of π/2.

The above problem is the so-called resonance problem when the positive
eigenenergies lie under the potential barrier. We solve this problem, using the
technique fully described in [5].

The boundary conditions for this problem are:

y(0) = 0,

y(x) ∼ cos[
√

Ex] for large x.

The domain of numerical integration is [0, 15].
For comparison purposes in our numerical illustration we use the following

methods:

• the well known Numerov’s method (which is indicated as method [a]);

• the explicit version of Numerov’s method which is developed by Chawla
[32] (which is indicated as method [b]);

• the exponentially fitted method of Raptis and Allison [25] (which is indi-
cated as method [c]);

• the exponentially fitted method of Ixaru and Rizea [28] (which is indi-
cated as method [d]);

• the new multiderivative exponentially fitted method developed in this
paper (which is indicated as method [e]).

The numerical results obtained for the five methods, with stepsizes equal to
h = 1/2n, were compared with the analytic solution of the Woods–Saxon poten-
tial resonance problem, rounded to six decimal places. Figure 4 shows the errors
Err = − log10|Ecalculated−Eanalytical| of the highest eigenenergy E3 = 989.701916 for
several values of n.

5. Conclusions

In this paper a new approach for developing efficient methods for the
numerical solution of the radial Schrödinger type equations is introduced. This
approach is based on exponential fitting procedure and multiderivative methods.
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Figure 4. Error (Err) for several values of n for the eigenvalue E3 = 989.701916. The non-existence
of a value of Err indicates that for this value of n, Err is positive.

Using this new approach we have developed an exponentially fitted multideriva-
tive method.

From the numerical results we have the following remarks:

• the Numerov’s method and the explicit Numerov-type method of Chawla
[32] have approximately the same behavior;

• the exponentially fitted Numerov-type method of Raptis and Allison [25]
is more efficient than the Numerov’s method and the explicit Numerov-
type method of Chawla [32];

• the exponentially fitted Numerov-type method of Ixaru and Rizea [28]
is more efficient than the exponentially fitted Numerov-type method of
Raptis and Allison [25];

• the new developed exponentially fitted multiderivative method is the more
efficient one compared with the other methods.

All computations were carried out on a IBM PC-AT compatible 80486
using double precision arithmetic with 16 significant digits accuracy (IEEE
standard).
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